# GCE Examinations Advanced Subsidiary / Advanced Level # **Decision Mathematics Module D1** ## Paper B ### **MARKING GUIDE** This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for knowing and using a method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Shaun Armstrong & Dave Hayes © Solomon Press These sheets may be copied for use solely by the purchaser's institute. #### D1 Paper B - Marking Guide 1. | order: | 5 | 6 | 4 | 1 | 3 | 2 | |--------|----------|-----|---------|----------|-----|-------| | | A | В | С | D | Е | F | | <br>A | <u>-</u> | 130 | 190 | 155 | 140 | (125) | | <br>В | 130 | = | 215 | 200 | 190 | 170 | | <br>-c | 190 | 215 | <u></u> | 110 | 180 | 100 | | <br>D | 155 | 200 | 110 | <u> </u> | 70 | 45 | | <br>E | 140 | 190 | 180 | 70 | | 75 | | <br>F | 125 | 170 | 100 | 45 | 75 | | M2 A2 lowest cost = £470 A1 (5) Final Output = 1 M2 A4 **(7)** (b) it finds the smallest value in the set of data **B**1 3. (a) x = 2, y = 14 - M2 A1 - (b) (i) e.g. augment SCT by 2 and SBECADT by 3 giving: - (ii) maximum flow = 53 M3 A3 A1 (c) (i) minimum cut = 53, passing through DT, CT and ET B1 (ii) max flow = min cut it is not possible to get any more flow across this cut B1 (11) **4.** (a) each node is joined to each other node by exactly one arc no node is joined to itself by a loop B1 (b) (i) ABCDA, ABDCA, ACBDA, ACDBA, ADBCA, ADCBA = 6 (3 choices for $2^{nd}$ node, 2 for $3^{rd}$ , 1 for $4^{th}$ : $3 \times 2 \times 1$ ) M1 A1 (ii) $4 \times 3 \times 2 \times 1 = 24$ M1 A1 (iii) $9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 362880$ - M1 A1 - (c) 27 25 29 32 19 24 17 26 (pivot in box) 17 19 27 25 24 26 29 32 $$L_4$$ M2 A2 (11) $L_7$ now complete | 5. | (a) | odd vertices are $C$ and $E$<br>shortest $CE = 28$<br>lowest total = sum of all arcs + shortest $CE$<br>= $218 + 28 = 246$ | B1<br>M1<br>M1<br>A1 | |----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------| | | (b) | odd vertices are $C$ , $E$ , $P$ and $Q$<br>shortest $CE$ and $PQ = 13 + 18 = 31$<br>CP and $EQ = 33 + 28 = 61CQ and EP = 15 + 20 = 35; \therefore lowest is 31total = sum of all arcs + 31 = 213 + 31 = 244$ | B1<br>M2 A1<br>M1 A1 | (c) Logo 2 requires 2 cm less stitching B1 (11) 6. (a) (i) $$x + y + z = 800 + 1000 + 700$$ $\therefore z = 2500 - x - y$ M1 A1 (ii) $costs = 500x + 800y + 600z + 100(x - 800) + 150(x + y - 1800)$ M1 A1 sub in for z giving: $costs = 150x + 350y + 1150000$ M1 A1 (b) $x + y \ge 1800$ and $x + y \le 2500$ A2 (d) considering vertices A, B, C and D minimum cost at A: y = 0 meets x + y = 1800 $\therefore$ should produce 1800 in Sep, 0 in Oct and 700 in Nov M1 A1 total cost = £1 420 000 A1 (15) **B**4 Total (75) ## Performance Record – D1 Paper B | Question no. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total | |--------------|--------|------------|-------|-------------------------------------------------|---------------------|-----------------------------|------------------|-------| | Topic(s) | Prim's | flow chart | flows | graphs,<br>Hamiltonian<br>cycles,<br>quick sort | route<br>inspection | linear prog.<br>- graphical | critical<br>path | | | Marks | 5 | 7 | 11 | 11 | 11 | 15 | 15 | 75 | | Student | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |